Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiologyopen ; 9(7): e1047, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32352651

RESUMO

Halophilic archaea from the genus Halorubrum possess two extraordinarily diverged archaellin genes, flaB1 and flaB2. To clarify roles for each archaellin, we compared two natural Halorubrum lacusprofundi strains: One of them contains both archaellin genes, and the other has the flaB2 gene only. Both strains synthesize functional archaella; however, the strain, where both archaellins are present, is more motile. In addition, we expressed these archaellins in a Haloferax volcanii strain from which the endogenous archaellin genes were deleted. Three Hfx. volcanii strains expressing Hrr. lacusprofundi archaellins produced functional filaments consisting of only one (FlaB1 or FlaB2) or both (FlaB1/FlaB2) archaellins. All three strains were motile, although there were profound differences in the efficiency of motility. Both native and recombinant FlaB1/FlaB2 filaments have greater thermal stability and resistance to low salinity stress than single-component filaments. Functional supercoiled Hrr. lacusprofundi archaella can be composed of either single archaellin: FlaB2 or FlaB1; however, the two divergent archaellin subunits provide additional stabilization to the archaellum structure and thus adaptation to a wider range of external conditions. Comparative genomic analysis suggests that the described combination of divergent archaellins is not restricted to Hrr. lacusprofundi, but is occurring also in organisms from other haloarchaeal genera.


Assuntos
Proteínas Arqueais/genética , Flagelina/genética , Halorubrum/genética , Halorubrum/metabolismo , Locomoção/genética , Sequência de Bases , DNA Arqueal/genética , Halorubrum/classificação , Reação em Cadeia da Polimerase
2.
Sci Rep ; 5: 7736, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25583370

RESUMO

Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g(-1) after 50 cycles and with high rate capability, delivering 770 mAh g(-1) at 5 A g(-1) (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future.


Assuntos
Fontes de Energia Elétrica , Flagelos/fisiologia , Lítio/química , Óxidos/química , Simulação por Computador , Técnicas Eletroquímicas , Eletrodos , Genes Arqueais , Halobacterium/genética , Minerais , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...